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A B S T R A C T

Background: Detecting subtle patterns of atrial fibrillation (AF) and irregularities in Holter recordings is intricate 
and unscalable if done manually. Artificial intelligence-based techniques can be beneficial. In fact, with the rapid 
advancement of AI, deep learning (DL) demonstrated the capability to identify AF from ECGs with significant 
performance. However, further development and validation on larger cohorts is still needed.
Purpose: The main purpose of this study was to develop a Residual-attention DL model by considering a large 
cohort of 2‑lead Holter recordings.
Methods: We developed a residual DL model by collecting a large dataset of 661 Holter recordings, which was 
labeled manually by an expert cardiologist. The DL model leveraged attention mechanisms, allowing it to capture 
long-range dependencies and intricate temporal relationships crucial for identifying subtle patterns indicative of 
AF.
Results: Experimental results demonstrated that our model achieved a sensitivity (detection of AF) of Se = 0.928 
and a specificity of Sp = 0.915, with an AUC-ROC of AUC = 0.967 on our dataset. Additionally, when evaluated 
with an external test dataset, specifically IRIDIA-AF, our DL model obtained Se = 0.942, Sp = 0.932, and AUC =

0.965. Finally, when compared under similar experimental conditions with other state-of-the-art models, our DL 
model achieved slightly better performance overall.
Conclusion: The Residual-attention DL model we proposed offers a promising solution for AF detection. The 
validation on external datasets contributes to its potential for deployment in clinical settings, providing clinicians 
with a valuable decision support system.

Introduction

Atrial fibrillation (AF) stands as the most common cardiac 
arrhythmia, contributing significantly to morbidity and mortality 
worldwide [1]. Its detection and management pose substantial chal
lenges to healthcare systems, necessitating accurate detection methods, 
specifically at early stage. Holter recordings, offering prolonged cardiac 
monitoring, emerge as invaluable resources for detecting AF, providing 
continuous electrocardiogram (ECG) data over extended periods [2].

Traditionally, AF detection from Holter recordings relies heavily on 
manual interpretation by trained clinicians. However, this process is 

labor-intensive, time-consuming, and prone to inter-observer variability 
[3]. Moreover, the increasing prevalence of AF mandates scalable and 
efficient detection methods. Herein lies the imperative for computerized 
systems, which can automate AF detection, enhance diagnostic accu
racy, and expedite patient care [2].

The advent of machine learning (ML) techniques revolutionized 
medical diagnostics, offering promising performance for automated AF 
detection [4]. Traditional ML techniques necessitate manual feature 
engineering, which is time-consuming and requires domain expertise. 
Additionally, these techniques may struggle to capture complex patterns 
and relationships within high-dimensional ECG signals. The dynamic 
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nature of ECG data, influenced by factors like patient movement, envi
ronmental noise, demographics, and disease prevalence, poses chal
lenges for traditional ML techniques.

Deep learning (DL) emerged as a compelling solution to address the 
shortcomings of traditional ML models in AF detection [5–7]. DL models 
are typically defined by their architectures, with convolutional neural 
networks (CNNs) and recurrent neural networks (RNNs) being promi
nent examples. These architectures, particularly CNNs and RNNs, 
demonstrate remarkable prowess in learning hierarchical representa
tions and capturing temporal dependencies from raw data [8]. None
theless, DL models encounter challenges in effectively leveraging long- 
range dependencies within sequential data, which are prevalent in 
ECG signals. One notable advancement in DL architectures, the attention 
mechanism, presents a paradigm shift in addressing these challenges 
[9]. The integration of residual-attention mechanisms into DL models 
holds profound implications for AF detection from Holter recordings. By 
leveraging both residual connections and attention mechanisms, these 
models can effectively capture long-range dependencies and salient 
features within ECG signals, thus likely improving performance for AF 
detection.

Typically, many existing methods for AF detection from Holter re
cordings have been validated using a small number of patients i.e., MIT- 
BIH AF [10] and long-term AF dataset [11], limiting their applicability 
to real-world clinical settings. In contrast, our work aims to address this 
limitation by leveraging a new and clinically significant dataset 
comprising diverse patient populations and high-quality ECG re
cordings. Being very flexible in nature, DL models are prone to learning 
specific characteristics of the dataset used to train them, potentially 
resulting in a model that struggles to generalize in practice. By utilizing a 
larger and more representative dataset, we can enhance the generaliz
ability and reliability of DL models. Particularly in the context of AF 
detection, the residual-attention DL model presents significant advan
tages over other DL-based methods when applied to Holter recordings. 
Firstly, the attention mechanism enables the model to focus on impor
tant segments of the ECG signal, enhancing interpretability and 
robustness [12,13]. Secondly, the inclusion of residual connections fa
cilitates the training of deeper networks, enabling a better capture of 
complex temporal dependencies in ECG segments [12,13]. The main 
contributions of our study are as follows: 

• We collected a large retrospective cohort of clinical data from the 
Holter device and developed a residual-attention DL for the detection 
of AF from the Holter recordings.

• We compared the performance of state-of-the-art DL models and the 
proposed model.

• We assessed the performance of the proposed DL model on different 
demographic groups.

Materials and methods

In our study, we used two datasets to develop and evaluate our DL 
model for AF detection from Holter recordings. One of the datasets is 
private, while the other, known as the IRIDIA-AF dataset, is publicly 
accessible. In the following, we provide detailed descriptions of both 
datasets.

The dataset

The dataset comprised 661 Holter records collected from 661 pa
tients at Groupe Hospitalier Ambroise Paré in Paris, France. Each Holter 
recording had an average duration of around 23 h and was captured 
using a Microport Spiderview Holter recorder, a 2‑lead system operating 
at a sampling rate of 200 Hz and an amplitude resolution of 10μV. The 
details about the dataset are described in [14]. The average age of the 
patients was approximately 60 years, with females accounting for 
approximately 39 % of the records. About 50 % of the records (n = 333) 

included at least one episode of AF or atrial flutter (AFL), with durations 
of the episodes varying from a few short events up to the entire record 
(chronic AF or AFL). The remaining records were entirely in sinus 
rhythm (n = 195), were characterized by a large incidence of premature 
ventricular contraction beats (PVC, n = 41), included episodes of atrial 
tachycardia (AT, n = 61) or ventricular tachycardia (VT, n = 31). The 
population distribution is illustrated in Fig. 1. In terms of atrial 
arrhythmia burden, our dataset presents the following distribution: AF 
accounts for 193,000 min, AFL for 93,000 min, and AT for 48,000 min. 
Notably, normal sinus rhythm (NSR) spans 180,000 min. The annota
tions underwent rigorous scrutiny to ensure that a minimum of 59 min 
per hour were edited by a single cardiologist, minimizing noise and 
guaranteeing a high quality of the data under analysis. The dataset was 
collected from two distinct batches; the first one (268 records) was used 
for training and validation and also included a number of AT events, 
whereas the second one was used exclusively for testing, and while there 
were no atrial tachycardia episodes there were on the contrary other 
challenging ventricular rhythms, including ventricular tachycardia (see 
Fig. 1).

IRIDIA-AF dataset

The dataset comprised 167 Holter records collected from 152 pa
tients at an outpatient cardiology clinic located in Belgium [15]. The 
records were collected using a Microport Spiderview Holter recorder, 
which is the same device employed for our data collection (please refer 
to the previous paragraph). Notably, records from patients with specific 
conditions, such as cardiac implantable electronic devices, persistent or 
permanent AF, or other cardiac diseases were excluded from the dataset. 
These exclusion criteria were implemented to ensure the homogeneity of 
the dataset and to focus the analysis on paroxysmal AF. All the 167 re
cords contained in the IRIDIA-AF dataset were considered only for 
testing.

Preprocessing

During the preprocessing step, we applied a third-order zero-phase 
Butterworth bandpass filter with cutoff frequencies of 0.5 Hz and 40 Hz 
to suppress baseline wander and reduce power line interference. Then, 
each recording was segmented using a 10-s window without any over
lap. The number of 10-s segments for the training, validation, and testing 
sets are presented in Table 1. We considered NSR and AT collectively as 
non-atrial fibrillation (non-AF), while grouping AF and AFL as AF. AT 
was categorized under non-AF due to distinctions in heart-rate stability, 
risk level, and treatment options compared to AF and AFL.

DL model

The DL architecture encompassed various types of layers, serving the 

Fig. 1. Distribution of patients by records in the dataset: Records with AF/AFL 
are shown in red, while records without AF/AFL are shown in green. The 
number of “chronic” records (i.e., entire records under the labeled rhythm) is 
indicated in parentheses. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.)
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dual purpose of feature extraction and detection. Fig. 2 elucidates the 
schematic representation of the residual-temporal attention (RTA) DL 
model proposed in this study. It highlights the integration of an RTA 
block and a gated recurrent unit (GRU) layer. The incorporation of the 
GRU layer subsequent to the RTA block facilitated proficient capture of 
temporal dependencies and sequential patterns inherent in 10-s ECG 
segments, thereby augmenting its efficacy in accurately detecting AF 
[16]. The RTA block was repeated six times, with the number of kernels 
beginning with 32, doubling every two iterations, and culminating at 
128. By repeating the RTA block multiple times, the model could 
effectively extract hierarchical representations of the input signals, 
leading to improved performance in AF detection. The RTA block 
comprised two components, elaborated upon below.

Trunk branch
Assuming that X, a 10-s segment of ECG data, is provided as input to 

the trunk branch of the RTA block, the RTA block is repeated six times, 
with the output of each block serving as the input to the subsequent 
block. The input X to the trunk branch passes through a convolutional 
block to generate a feature map X1, which is then fed to the attention 
branch.

In the trunk branch, the feature map X1 is passed through another 
convolutional block to generate X2, which is element-wise multiplied 
with the attention map A (obtained from the attention branch). The 

product X3 = X2 ⊙ A results in a refined feature map, which is then 
combined with X1 using a residual connection. This final refined feature 
map, X3, is passed through another convolutional block to generate the 
feature map X4 before proceeding to the next layer of the main DL ar
chitecture.

Attention branch
The attention branch begins with the intermediate feature map X1 

from the trunk branch. This feature map is then passed through a con
volutional block to generate the feature map X5. To capture global fea
tures, the attention branch incorporates both down-sampling and up- 
sampling operations. Down-sampling is performed using max-pooling, 
while up-sampling is achieved through nearest-neighbour interpola
tion. These operations facilitate the extraction of features at different 
scales, thereby enhancing the model's ability to capture relevant infor
mation from the input data.

Following the down-sampling operation on X5, a convolutional block 
is applied to expand the feature dimensions, yielding the feature map X6. 
Subsequently, an up-sampling operation is performed, and the resulting 
feature map is fed into another convolutional block, which produces the 
feature map X7. This feature map X7 is then fused with the local feature 
map X5 through a residual connection, resulting in the feature map X8. 
The fused feature map X8 is passed through an additional convolutional 
block to generate the refined feature map X9, which further refines the 

Table 1. 
Number of 10-s ECG segments (in thousand units) for each of the two datasets considered.

Dataset Training Validation Testing

Non-AF AF Non-AF AF Non-AF AF

NSR AT AF AFL NSR AT AF AFL NSR AF AFL

Our dataset 748 261 848 136 24 25 66 34 2324 248 389
IRIDIA-AF – 1872 536 –

Fig. 2. Diagram of the proposed DL architecture. Here, Conv and BN refer to the convolutional layer and batch normalization, respectively.
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attention map.
Finally, the feature map X9 is processed by a convolutional layer with 

a 1 × 1 filter size and a sigmoid activation function. The 1 × 1 convo
lution performs a channel-wise transformation, aggregating information 
across the different feature channels at each time step. By applying this 
convolution, the layer effectively combines and reweights the input 
features at each spatial position, producing a compact, yet enriched 
representation. This process yields the output feature map X10, which 
contains the temporal attention weights, denoted as A. These attention 
weights are then used to adjust the importance of each feature within the 
trunk branch, allowing the model to prioritize the most relevant features 
of the input data, denoted as X.

Implementation details
We used the focal binary cross-entropy loss function [17] to optimize 

the model parameters, as depicted by the equation: 

focal loss(p) = −
∑C

j=1
αj

(
1 − pj

)γ
log

(
pj

)

where C is the number of classes (here, 2), pj is the predicted probability 
of the j-th class, αj denotes the balancing parameter of the j-th class to 
address the class imbalance, γ represents the focus parameter to down
weight easy samples. In our study, we defined the parameters as follows: 
α0 = 0.8 and α1 = 0.2 for the AF and non-AF classes, respectively. 
Additionally, we set γ = 3. The Adam optimizer with a learning rate of 
0.001 was utilized to optimize the model parameters. The following 
hyperparameters were adopted during training: 50 epochs and a batch 
size of 128. To improve training efficiency, we implemented a learning 
rate scheduler to adjust the learning rate. Specifically, if no improve
ment was observed for six consecutive epochs, the learning rate 
decreased by 75 % of its previous value. These hyperparameter values 
were chosen on the basis of the performance obtained on the validation 
set.

Results and discussions

The performance of the DL model was evaluated using key metrics 
such as sensitivity (Se) and specificity (Sp). Se measures the proportion 

of correctly predicted positive samples (AF) out of all positive samples. 
Similarly, Sp measures the proportion of correctly predicted negative 
samples (non-AF) out of all negative samples. Furthermore, the area 
under the ROC curve (AUC) was calculated to provide a comprehensive 
measure of the overall performance of the AF detection model. As shown 
in Fig. 3, the model correctly classifies an AF record (a) but sometimes 
incorrectly classifies a non-AF record as AF (b).

Table 2 presents the performance metrics of the proposed DL model 
on the test set which is part of our dataset: a Se of 0.928, a Sp of 0.915, 
and an AUC of 0.972 for AF were obtained. We also computed the 
positive predictive value for our model which it was 0.750. To gauge our 
model's efficacy against existing state-of-the-art DL models [5–7], we re- 
implemented them from scratch, considering the same hyper- 
parameters used in our proposed model. Remarkably, our DL model 
demonstrated slightly improved performance compared to the other 
ones. Moreover, we computed the 95 % confidence interval of Se, Sp and 
positive predictive value using jackknife. These confidence intervals 
were all less than 0.005 for the three metrics.

In addition, the efficacy of our proposed DL model for AF detection 
was assessed using an external dataset, namely the IRIDIA-AF dataset. 
The results yielded a Se of 0.942 and a Sp of 0.932. In Fig. 4, the ROC 
curve illustrates the trade-off between Se and Sp across different 
threshold values. In both test sets, we achieved an AUC-ROC> 0.960 for 
AF detection, indicating a strong discriminatory ability of our model in 
distinguishing between positive and negative cases.

We further investigated the generalizability of our DL model across 
diverse demographic groups, particularly focusing on gender and age. 
The results, in terms of performance, are reported in Table 3. For gender- 
based analysis, the model exhibited Se rates of 0.931 for males and 

Fig. 3. Example of (a) an AF record correctly classified (true positive) and (b) a Non-AF record incorrectly classified as AF (false positive). Big horizontal squares 
refer to 0.2 s and big vertical squares to 0.5 mV

Table 2 
Comparing the performance of the proposed DL model with other state-of-the- 
art DL models on our dataset.

DL models Se Sp AUC-ROC

Hannun et al. [5] 0.870 0.913 0.949
Ribeiro et al. [6] 0.851 0.921 0.944
Burke et al. [7] 0.921 0.832 0.951
Our model 0.928 0.915 0.967
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0.874 for females, alongside Sp of 0.912 for males and 0.951 for females. 
Regarding age stratification ( ≤ 60 and > 60), the model demonstrated 
a Se of 0.901 and 0.894, respectively, with a Sp of 0.922 and 0.913. 
Moreover, we assessed the performance of our DL model among two 
distinct cohorts of patients: individuals with an experience of VT or PVC. 
In the VT group, we achieved a Se of 0.973 and a Sp of 0.832. In the PVC 
group, we attained a Sp of 0.934. It is noteworthy that the number of 10- 
s segments for AF in VT patients was fewer than 18,000, while there 
were no 10-s segments of AF for PVC patients. Furthermore, we evalu
ated the performance of our DL model for both AF and AFL segments 
separately and achieved recognition rates of 0.900 and 0.975, 
respectively.

Finally, the episode-related metrics for AF defined in the EC57 [18] 
standard were assessed on the MIT-BIH [19] and on our own dataset of 
393 Holter records using the wfdb tools from Physionet [20]. For this 
test, we considered an episode of AF any ECG portion of at least three 
consecutive (AF-flagged) 10-s segments. The resulting average sensi
tivities and positive predictivities were 0.87/0.57 in the MIT-BIH and 
0.98/0.60 in our test set. These performance metrics are somehow lower 
than other reported rule-based methods, and they are likely due to the 
crude definition of an onset/offset of the AF episode and its intrinsic 
limitation to be a multiple of 10-s blocks and which is one of the primary 
the focuses of our line of research. Overall, these findings implied the 
robustness and applicability of our DL model across varied demographic 
cohorts, indicating its potential for widespread use in clinical settings.

Limitations and future work

Our DL model is designed to analyze ECG data segmented into 10-s 
intervals, as demonstrated in this study using Holter recordings. Mov
ing forward, we aim to enhance the model's performance by evaluating 
it at both the episode level and the patient level, addressing this limi
tation to improve its clinical applicability.

Conclusion

The effectiveness and reliability of our DL model are rooted in its 
performance on a large and clinically relevant dataset, confirming its 
practical value. The residual temporal attention-based DL model adeptly 
identifies key features in AF rhythms, resulting in robust performance 
across our dataset and an external test set. Notably, it surpasses slightly 
three existing state-of-the-art DL models, highlighting its superior ca
pabilities. In addition, our model demonstrates consistency and resil
ience by analyzing diverse demographic groups. These findings 
underscore the importance of our model in enhancing broader appli
cability and generalizability in the AF detection task.
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